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Abstract: The blood-brain barrier (BBB) regulates the passage of molecules between the bloodstream and the brain. Overcoming
the difficulty of delivery drugs to specific areas of the brain is a major challenge. The BBB exerts a neuroprotective function as it
hinders the delivery of diagnostic and therapeutic agents to the brain. Here, we provide an overview of the way in which peptides
and nanotechnology are being exploited in tandem to address this problem. Peptides can be used as specialised coatings able to
transport nanoparticles with specific properties, such as targeting. The nanoparticle can also carry a peptide drug. Furthermore,
peptides can be used in less conventional approaches such as all-peptide nanoparticles. In summary, the combined use of
peptides and nanotechnology offers tremendous hope in the treatment of brain disorders. Copyright  2007 European Peptide
Society and John Wiley & Sons, Ltd.
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INTRODUCTION

The adage that ‘good fences make good neighbors’ is
perhaps nowhere better illustrated than in the human
body, which encompasses various gas- and fluid-filled
sacs, (e.g. the lungs, colon, and stomach) separated by
specialised tissues (uterus, brain capillaries,. . .) that act
as barriers regulating the passage of molecules from one
compartment to another [1]. The performance of these
barriers is directly related to health; indeed, myriad dis-
ease states are associated with loss of barrier function.
This holds especially true for the blood-brain barrier
(BBB), due to the central role of the brain. The BBB
regulates the passage of molecules between the blood-
stream and the brain, preventing the entry of harmful
substances into the brain while actively regulating the
uptake and efflux of ions, nutrients, and metabolites
[2]. Physiological barriers are thus vital to homeostasis
at the tissue, organ, and organism levels [1].

Circumventing these physiological barriers can be
of strategic importance in drug delivery and medical
diagnostics. Herein, we provide an overview of how
peptides and nanotechnology are being exploited in
tandem for these applications.

Nanoparticles, which are gradually being developed
as drug delivery systems, can be envisaged to carry pep-
tide cargo [3]. Furthermore, peptides can be used in less
conventional approaches such as all-peptide nanopar-
ticles or as specialised coatings able to impart nanopar-
ticles with specific properties, such as targeting.

* Correspondence to: Ernest Giralt, Department Organic Chemistry,
University of Barcelona, Spain; e-mail: egiralt@pcb.ub.es
‡ This article is part of the Special Issue of the Journal of Peptide
Science entitled ‘‘Peptides in Nanotechnology’’.

In the present article we have focussed our attention
on the BBB, summarising literature reports on the
use of peptides and nanotechnology for the treatment
and diagnosis of brain disorders, and comparing these
approaches to other methods.

THE BLOOD-BRAIN BARRIER
The BBB is the most important barrier involved in
the regulation of molecules accessing the brain. The
brain is highly vascularised, containing a very intricate
network of capillaries (nearly every brain cell is located
within 20 µm of a capillary [4]. The endothelial cells
that form the brain capillaries are sealed together by
tight junctions, and have no fenestrations and very
low pinocytosis. This combination of features creates
the BBB [5], which is both a physical and enzymatic
barrier (Figure 1).

The BBB can become damaged in certain situations,
as described by Couvreur [6]. In neurodegenerative
diseases such as Alzheimer’s disease, although Aβ

crosses the BBB by the RAGE receptor [7], no dam-
age of the BBB has been described. In cerebrovas-
cular diseases the integrity of the BBB is variable; it
depends on the hypertension, severity and duration
of the cerebral ischemia [8]. In the case of inflamma-
tory diseases caused by an infection, the BBB opens
as an indirect consequence of the immune response,
which leads to the release of cytokines, chemokines,
cellular adhesion molecules, and matrix metallopro-
teases at the infection site. These molecules have
been shown to alter the structure and function of the
BBB [9]. The opening of the tight junctions in brain
tumours is one of the most important abnormalities
in brain cancer, and becomes more pronounced as
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the malignancy increases. However, hyperpermeability
occurs mainly in new vessels, whereas barrier function
is retained in the growing margins of the tumour
[10,11].

An invasive biopsy is currently the preferred method
to confirm cancer diagnosis, and can provide extra
information about histological type, classification,
grade, and best treatment. However, it is clear that
early detection is the key issue as it correlates with a
positive prognosis. The actual contrast agents used
for magnetic resonance imaging (MRI) fail to cross
the BBB, so a disruption of the barrier is provoked
to make them able to reach the CNS. The BBB can
be permeabilised using either osmotic disruption by
certain hyperosmolar agents, such as mannitol, or
biochemical opening by bradykinin analogues. This
leads to reversible opening of the tight junctions, but is
not specific enough to disallow CNS entry of toxins
and unwanted molecules, thus potentially resulting
in significant damage. Another option is provoking
the disruption by a localised hyperthermia [12]. A
contrast agent able to cross the BBB without disruption
would provide valuable information and could help in
MRI visualisation of early stage tumours, either before
biopsy or during surgery.

The delivery of drugs and diagnostic agents to
the brain is generally limited in both normal and
pathological conditions. Hence, there is an urgent need
for new strategies to these ends. Research in this
field entails differentiation of cases in which the BBB
is damaged, and those in which artificial disruption
is provoked. Numerous research groups are trying to
avoid solutions that imply disruption due to its many
inherent risks.

There have been three major paths proposed for
delivery of active molecules to the brain: intracerebral,
intraventricular, and intravascular. Even in the case of
the latter, which is the most promising, crossing the
BBB remains a challenge. Additionally, the nasal route
has been recently suggested as an alternative strategy
for bypassing the BBB [13–16]. To date, intravascular
delivery has been tested using lipophilic analogues of
the desired active molecules, in order to improve passive
diffusion, or using one of the endogenous transport
systems of the BBB, (e.g. carrier- or receptor-mediated
transcytosis).

Medicinal chemists have focussed on creating pro-
drugs, including polymeric prodrugs [17], as well
as using chemical delivery systems such as those
described by Bodor, based on redox trapping within
the brain [18], or on use of the transferrin receptor
[19]. However, lipophilic analogues can enhance plasma
protein binding, and peripheral distribution and accu-
mulation, thereby impairing CNS uptake of the active
molecule.

Over the past few decades, pharmaceutical technol-
ogy has lead to the emergence of different nanosystems
or nanoplatforms tailored to deliver drugs to the brain,
including polymeric nanoparticles, liposomes, and solid
lipid nanoparticles. We have focussed here on the use
of polymer matrix nanoparticles.
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Figure 1 The blood-brain barrier is created by the tight junctions between the endothelial cells of the blood vessels in the
brain, protecting it from harmful substances. Reproduced with permission of the publisher, full acknowledgment to the authors
and Cambridge University Press (K. Francis et al., Innate immunity and brain inflammation: the key role of complement, Expert
Reviews in Molecular Medicine (2003) Vol. 5: 119, Cambridge University Press, DOI: 10.1017/S1462399403006252). This figure
is available in colour online at www.interscience.wiley.com/journal/jpepsci.

TARGETING THE BRAIN WITH POLYMER MATRIX
NANOPARTICLES

Although the first review of nanoparticles appeared only
three decades ago [20], they are hardly new; silver and
gold nanoparticles have been used to colour ceramic
glazes and stained glass since the tenth century, and
their use may even date to the fourth century [21]. There
are also natural sources of nanoparticles, such as fires
and volcanic eruptions. Life can be seen as depending
on nanoscale objects, including proteins, enzymes, and
DNA. A perfect example of nano-entrapment is the
ability of ferritin to store excess iron in our bodies.
Nanoparticles have been exploited for a broad array of
applications. Among the most promising of these is the
transport of drugs across the BBB.

As previously mentioned, we have focussed here on
polymer matrix nanoparticles. These are solid colloidal
particles, made of polymeric materials ranging in
size between 1 and 100 nm according to the usual
definition, although there are examples of nanoparticles

of several hundreds of nm. These particles can carry
therapeutic drugs or diagnostic agents complexed by
adsorption, entrapment, or covalent attachment. The
nanoparticle may improve the transport properties and
stability of the transported agent. Once the nanoparticle
reaches the desired target, release can be achieved by
one or more mechanisms such as desorption, diffusion,
and nanoparticle erosion.

Nanoparticles are highly advantageous as delivery
vehicles: the loading and release of cargo can be
controlled; specific molecular-targeting factors can be
attached; a hydrophilic coating can prevent undesired
uptake of the nanoparticle by the reticuloendothelial
system; and the matrix nature of the nanoparticle can
provide protection against enzymatic and/or chemical
degradation of the active agent. Additionally, the
nanoparticle can prevent exclusion of the active agent
by p-glycoprotein (p-gP) or multidrug resistance (MDR)
protein, and may reduce the immunogenicity or other
some side effects of the active agent. Finally, unlike
conventional conjugate vehicles, which are generally
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limited to 1 : 1 stoichiometry of vehicle to active agent,
a single nanoparticle can carry up to thousands of
molecules of cargo.

Compared to liposomes, nanoparticles are much
simpler to prepare and to scale-up, as a low number
of excipients are used [22]; they are also highly
stable, both during storage and in vivo [23]; and their
sustained release over a period of weeks is more
easily achieved. PEGylated nanoparticles can even be
lyophilised [24,25].

There are some concerns about the security, han-
dling, and administration of nanoparticles [26,27],
including their possible effects on iron homeostasis
in the body [28]. However, once the protocols for
the delivery of drugs and other molecules across the
BBB using nanoparticles are safely, efficiently, and
specifically established, they may prove to be one of
the highest impact contributions to clinical neuro-
sciences.

MRI, A WONDERFUL WINDOW ON BRAIN
ACTIVITY

One of the most promising applications of nanoparticles
is the transport of MRI contrast agents to the brain to
enable studying the CNS of patients.

Iron oxides are classic superparamagnetic MRI
contrast agents that directly affect the T1 and T2 water
molecule relaxation times [29,30]. As iron oxides are
insoluble in water, they must be delivered as modified
colloids or matrix nanoparticles. This is achieved by
using hydrophilic molecules such as dextrans [31].

Contrast agents such as Ferumoxtran-10 [32] and
Gadolinium [33] are generally unable to cross the
BBB alone; at the time of delivery, they are usually
administered with a solution that provokes opening
of the BBB. Hence, there is a pressing need for the
development of delivery systems that do not disrupt
the BBB; yet, do not imply prolonged exposure of the
patient to the MRI magnetic field.

Nanoparticles are being used to study the integrity
of the BBB in different situations. Dextran-coated
USPIONs (ultra-small superparamagnetic iron oxide
nanoparticles) are used to obtain additional information
to that obtained by conventional gadolinium-enhanced
MRI on BBB damage in patients with malignant brain
tumours [32]. Cerebral ischemia can cause an increase
in BBB permeability, due to the up-regulation of
proinflammatory cytokines. This effect can be studied
by a novel approach involving in vivo microdialysis and
fluorescently labelled nanoparticles [34].

Recently, two groups have been working on the
design and application of multifunctional nanoprobes
that are detectable by MRI and fluorescent microscopy,
and that could be used for the determination of
brain tumour margins during presurgical and surgical

phases [35,36]. The researchers have also worked
on targeting contrast agents by attaching monoclonal
antibodies that identify cells from specific tumour types
[37]. Recently nanoparticles delivering markers of the
fibrillar β-amyloid, such as thioflavin-T, have been
shown to act as targeting moieties for Alzheimer’s
disease [38]. Unfortunately, all these approaches are
limited by the fact that they imply disruption of
the BBB.

Contrast agents that cross the BBB without disrupt-
ing it would have many applications for brain cancer
diagnostics and other severe brain diseases such as
Alzheimer’s disease.

HOW CAN NANOPARTICLES IMPROVE DRUG
DELIVERY?

Nanoplatforms comprise a nanoparticle, a specific
nanoparticle coating, and a drug or diagnostic agent.
An ideal nanoplatform could be intravenously or even
orally administered; would be stable in blood and
have a prolonged circulation time; would not provoke
the activation of neutrophils; and would target the
CNS while exhibiting minimal systemic effects, cross
the BBB, and only release the drug upon arrival
into the desired cells of the CNS. The development
of nanoplatforms requires a multidisciplinary team
of engineers, physicists, chemists, cell biologists,
pharmacologists, and others. Several good reviews of
nanoplatforms have recently appeared, which introduce
the idea of a nanoplatform [39] cover the topic from
different perspectives [40–46] and numerous patents
on nanoplatforms have also been registered.

Nanoparticles are rapidly removed from the blood-
stream after injection, accumulating predominantly in
the liver and the spleen [47,48]. However, desired local-
isation of the nanoparticles could be achieved through
nanoplatform design.

The first step in removal of nanoparticles from
the bloodstream is opsonisation. Opsonins cover
nanoparticles, and then undergo phagocytosis via
specific membrane receptors on monocytes and tissue
macrophages. Opsonisation can be minimised by
coating the nanoparticle surface with hydrophilic
PEG [49] leading to longer circulation times of the
nanoparticles in the blood.

Therapeutic agents that do cross BBB must still
overcome another obstacle: local efflux transporters.
P-glycoprotein, MDR protein, and others work as
detoxification and defence mechanisms for the brain,
thereby complicating delivery of compounds to the CNS.
Indeed, drugs such as paclitaxel [50] are substrates of
these efflux systems. The effect of the efflux system is
not only restricted to anticancer drugs, but also some
promising anticonvulsant agents such as MRZ 2/276
are actively transported out of the brain [51].
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Current efforts at making new chemotherapeutic
agents that could reach the CNS include use of
nanoparticles that circumvent the p-gP efflux system
[52].

Although non-selective inhibition of efflux trans-
porters has been suggested as an approach to facilitate
nanoplatform entry, it implies a risk of CNS or periph-
eral toxicity [53]. Entrapment of the drug inside a
nanoparticle could obviate coadministration of p-gP
inhibitors. Nanoplatforms can decrease the side effects
and toxicity related to the administration of anticancer
drugs such as doxorubicin in organs that do not need
to be treated, (e.g. the heart) [54,55]. Moreover, delivery
of a compound by nanoparticles can help prevent its
degradation and photobleaching [56].

PEPTIDES AS DRUGS FOR TREATMENT OF CNS
RELATED DISORDERS

One of the most promising, yet challenging, applications
of nanoparticles is the delivery of therapeutic peptides
and proteins to the brain. The main concern during
the loading of nanoparticles with peptides or proteins
is the chemical stability of the peptide or protein [57]
to the elevated temperatures, shear force, surfactants,
free radicals, and UV radiation implied. Moreover,
the function of proteins depends on their structure.
Hence, the preparation needs to be optimised for each
nanoparticle formulation [58–65]. Stability has been
studied in depth by Van de Weert [59], Schwendeman
[58] and Cleland [66].

The typical peptidic cargo delivered by nanopar-
ticles are anaesthetic agents such as dalargin [67],
kyotorphin [67], and the neuromuscular blocking agent
tubocurarine [68]. The interest of using these peptides
is mainly academic, as they are anaesthetic agents
that only exhibit therapeutic effects when administered
directly in the brain, (i.e. not after peripheral adminis-
tration).

Other peptides which have been transported to the
CNS by nanoparticles are Z-DEVD-FMK, a specific
caspase inhibitor [69], and NC-1900, a vasopressin
fragment analogue [70]. The nanoplatform formed by
peptide Z-DEVD-FMK entrapped in PEG-overcoated
chitosan nanoparticles and fuctionalised with OX26
monoclonal antibody against transferrin receptor [71]
using the avidin-biotin system has shown therapeutic
promise for brain ischemia [69].

PEPTIDIC NANOPARTICLES

Nanoparticles have been used for pharmaceutical
and medical applications for over 30 years. Albumin
nanoparticles [72] first appeared in the mid-1970s. The
first albumin nanoparticles with a magnetic core were

prepared shortly thereafter, but the method is very
aggressive, leading to denaturation of the protein [73].
Around the same time, the first biodegradable acrylic
nanoparticles made of poly(methylcyanoacrylate) and
poly(ethylcyanoacrylate) [74] were developed. Similar
compounds were later made with poly(n-butyl, isobutyl,
n-hexyl and isohexyl-cyanoacrylates).

Poly(lactic acid) and its copolymer poly (lactic-co-
glycolic) acid were first developed for transplantation
purposes. It was not until 1981 that the first
nanoparticles of poly (lactic-co-glycolic) acid were
described by Gurny [75]. These nanoparticles were
especially challenging to prepare due to their poor
solubility in organic solvents, and the fact that they
cannot be directly polymerised.

Albeit nanoparticles for diagnostic applications have
been on the market for over ten years, it was not until
2005 that the first nanoparticle product containing a
drug became commercially available (Abraxane).

Nanoparticles are currently made from a wide
array of materials such as poly(alkylcyanoacrylates);
poly(methylidene malonate); polyesters such as poly
(lactic acid), poly(glycolic acid), poly(ε -caprolactone)
and their copolymers; polysaccharides; and proteins.
The choice of nanoparticle materials is based on
biodegradability, price, intrinsic immunogenicity, and
toxicity. Therefore, certain peptides with inherently low
toxicity and immunogenicity are ideal materials from
which it is possible to fabricate nanoparticles.

Preparation of a nanoplatform may result in inac-
tivation of the therapeutic molecule. In this sense,
the nanogels described by Vinogradov in 1999 [76]
are promising alternatives for the delivery of oligonu-
cleotides. Nanogels are flexible hydrophilic polymer gels
of nano-size made of a network of cross-linked ionic
polyethyleimine (PEI) and non-ionic PEG chains [77].
Peptides can be used instead of PEI-PEG, and can also
form nanogels to entrap molecules that are sensitive
to the preparation procedure [78]. Like Vinogradov’s
nanogels, peptidic nanogels can also carry high pay-
loads of macromolecules, which is usually impossible
with conventional nanoparticles.

Another parameter that needs to be taken into
account is biodegradability of the nanoparticle.
Poly(butylcyanoacrylate) has proven to be the most
promising material in vivo because of its rapid degrada-
tion [79]. Biodegradability can work in favor of peptidic
nanoparticles. The intestinal absorption of peptidic
nanoparticles may be improved by designing them with
the mucoadhesive properties of chitosan [80].

There are a few examples of peptidic nanoparticles. In
the chemotherapeutic field, many attempts have been
made to formulate paclitaxel. One of the most promising
is Xyotax, a poly-(L)-glutamic acid-paclitaxel conjugate.
It was designed to have greater aqueous solubility
and passive tumour targeting than the parent drug
as administered alone [81,82]. Xyotax is not believed
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to cross the BBB, but rather to get absorbed into the
endothelial cell surface, where it subsequently releases
the drug.

Another example of a peptidic nanoparticle is pro-
tamine, a small polycationic peptide that it is found
in salmon sperm, and that can condense DNA and
deliver it to the nucleus of the egg after fertilisa-
tion. Protamine nanoparticles could help stabilise DNA
cargo, and when coated with apolipoprotein E, allow
transcytosis. In a recent work by Kratzer [83], the
only problem detected was the loss of cargo inside
cells during transcytosis. Albeit protamine nanopar-
ticles require further development, they represent a
milestone in the fledgling field of peptidic nanoparti-
cles. It would be also interesting to know if a peptidic
nanoparticle could be used to deliver plasmids, as
an alternative to cationic albumin-conjugated PEGy-
lated nanoparticles (CBSA-S-(Maleimido-PEG-PLA-co-
MPEG-PLA)) [84].

PEPTIDE COATED NANOPARTICLES

Different nanoparticle surface coatings are used for dif-
ferent purposes: hydrophilic surfactants [41,68,85–87]
reduce nanoparticle absorption by reticuloendothe-
lial system organs to alter biodistribution of the
nanoparticle; poloxamers and poloxamines induce
a steric repulsion effect, which minimises adhe-
sion of nanoparticles to macrophage surfaces, con-
sequently minimising phagocytic uptake [88]; surface
PEGylation increases blood half-life of nanoparticles
[49,89,90]; and polysorbate-80 improves BBB trans-
port of nanoparticles [67,87,91,92]. Any coating used
for CNS targeted nanoparticles must allow the interac-
tions needed for BBB transport [88].

Das et al. [93] used an elegant double coating
of polysorbate-80 and PEG to enable oral delivery
of Dalargin–nanoparticle conjugates. The PEG was
employed to protect the peptide-loaded nanoparticle
from the pH and enzymes of the gastrointestinal tract
[94,95], and to increase the circulation half-life by the
disopsonic action of the long PEG chains [49,96–98].

From the initial idea of molecular trojan horses (con-
jugates of a drug that is not transported through the
BBB to an MAb that undergoes receptor mediated
transcytosis) [4], the use of monoclonal antibodies for
the transport of nanoparticles appear [69,99]. Different
peptides have been described that bind to the transfer-
rin receptor and then undergo transcytosis [100]. One
can thus imagine a nanoplatform coated with a peptide
that binds to the transferrin receptor and crosses the
BBB. An advantage of this approach is that peptides are
much easier to prepare than monoclonal antibodies.

A peptidic coating could also replace the typical
cationised albumin coating used to make nanoparticles
cross the BBB by adsorptive-mediated transcytosis. For

this case, to use D-amino acids in the peptide would
increase the stability of the coating to enzymatic activity
[101]. An advantage of this method is that it obviates
the need for recombinant albumin.

Peptides such as TAT have been used to enable
transport of fluorescently labelled silica nanoparticles
in vivo across the BBB [102]. In addition, polylysine
has been used to coat iron oxide nanoparticles for their
transport across the BBB [103,104]. The polycationic
nature of the polylysine coating allows conjugation of
DNA cargo for gene therapy.

Constantino et al. have recently reported peptide-
coated poly(lactic-co-glycolic) acid nanoparticles that
are transported through the opioid receptor [105]. The
only modification introduced into the peptide sequence
is substitution of the N-terminal Tyr with Phe to
avoid any potential opioid effects. The group has also
recently described the use of dendrons to create a
well-defined arrangement of the peptidic coating on
nanoparticle surfaces [106]. Although the dendrons
they use are based on Lin’s amine, peptidic dendrimers
could be another option to obtain the said arrangement
[107,108].

Polysorbate-coated nanoparticles absorb apolipopro-
teins from blood, and then cross the BBB by the
low-density lipoprotein receptor (LDL-receptor), which
is overexpressed in the brain endothelium. Coating the
nanoparticles with polysorbate has been shown to be
superior than coating them directly with apolipoprotein.
The possibility to coat the nanoparticles with a peptide
that binds to the LDL-receptor to undergo transcytosis
could be advantageous, as it would avoid the different
protein adsorption patterns on the nanoparticle surface
[109].

Binding of a peptide-coated nanoparticle to a
given receptor can result in the nanoparticle being
transported across a barrier by a mechanism other
than that expected of the coating [105].

Nanoparticle coatings have created various contro-
versies. A major disagreement between Kreuter and
Olivier started in 1999, when the latter suggested that
polysorbate 80-PBCA may compromise the integrity of
the BBB [110]. Kreuter responded by publishing that
there was no toxicity; only some effects due to the
extremely high doses used in the assay [55,86]. This
polemic led to numerous in-depth studies on surfactant
effects [111,112].

TOWARDS AN ALL-PEPTIDIC NANOPLATFORM
FOR BRAIN THERAPY AND DIAGNOSIS

There is an increasing interest in peptides with
therapeutic potential, including peptide-based drugs for
the treatment and diagnosis of CNS diseases [113,114].
Hence, transport of peptidic drugs and diagnostic
agents to the CNS will be evermore required in the near
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future. Use of peptidic nanoparticles in nanoplatforms
allows for mild conditions that do not affect the peptidic
cargo. Finally, a peptidic coating could be used to
fine-tune an all-peptidic nanoplatform by modulating
its biodistribution, increasing its half-life in blood,
or improving its transport across the BBB by an
endogenous mechanism (Figure 2).

NANOPLATFORM CHARACTERISATION

The components of nanoplatforms are characterised
by different techniques. The size and morphology
of the dried nanoparticles are commonly determined
by SEM (scanning electron microscopy) and AFM
(atomic force microscopy), whereas the size and
distribution of nanoparticle aggregates in aqueous
solution are determined by light scattering. The
surface charge is determined by measuring the zeta
potential. X-ray photoelectron spectroscopy and Fourier
Transformation Infrared Spectroscopy are used to
study the surface composition of the nanoparticle, and
to determine the position of the hydrophilic groups
modifying the polymer.

The encapsulated amount of drug or imaging
agent is determined by elemental, spectrophotometric,
and chromatographic analysis. Drug release and
biodistribution studies must also be performed. The
potential of nanoplatforms to challenge the integrity
of the BBB is evaluated by MTT assays, whereby
the transendothelial resistance (TEER) or the inuline
transport across a coculture of bovine brain and
endothelial cells.

Nevertheless, therapeutic and diagnostic applica-
tions of nanoparticles are still limited by unresolved
drawbacks. In various reports on nanoparticle deliv-
ery of CNS drugs [41,91,92], the brain is extracted
and homogenated after the in vivo assay, and the con-
centration of the drug in the resulting homogenate is
measured. It is frequently claimed that because the
blood capillaries represent only 1% of brain volume,
and the brain blood vessel endothelial cells only 0.1%,
then drug concentration can be directly measured in
the brain homogenate without considering that the drug
could be in the brain vessel endothelial cells. The basis
for this affirmation is that if the drug detected in the
brain homogenate is only in the endothelial cells, then
the concentration would have been absolutely toxic for
the animal. To avoid this assumption, the localisa-
tion of the nanoplatform could be tracked by using a
fluorophore such as 6-coumarin. Once attached, the
fluorophore is not easily released from the nanopar-
ticle [115]; hence, it can be assumed that wherever
fluorescence is found, corresponds to the location of
nanoparticles [116,117]. Another tracking option is
to use a dye such as rhodamine, introduced during
nanoparticle polymerisation [77,105]. Alternatives for
localising polymeric nanoparticles include binding gold-
nanoparticles, or entrapping copper chlorophyll in the
nanoparticle [118]. All of these methods are preferable
to the use of radioactivity, which is widely employed for
labelling nanoparticles [119].

Very frequently, nanoparticle studies only include
evaluation of uptake without separately exploring
transport; in these studies, what happens after uptake
is left to speculation [41,52,120–124]. Transport

Figure 2 The idea of an all-peptidic nanoplatform would put together the advantages that a peptidic nature can bring to
every piece of this nanoplatform, in terms of mild synthetic conditions, potential to modulate the nanoplatform biodistribution,
to increase its half-life in blood, and to improve its transport across the BBB. This figure is available in colour online at
www.interscience.wiley.com/journal/jpepsci.
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studies are now starting to be performed in different
cellular models of BBB [125].

In summary, the combined use of peptides and
nanotechnology offers tremendous hope to address
brain disorders by crossing the BBB. Nonetheless, the
mechanisms of in vivo nanoplatform transport remain
poorly understood. Moreover, nanoparticles, coatings
and coadjuvants must be further studied for their
potential effects on the structural integrity and function
of the BBB [86,91,126].
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